HW09 - Electrochemical Stoichiometry

① This is a preview of the draft version of the quiz

Started: Nov 8 at 5:50pm

Quiz Instructions

Question 1	1.5 pts
What is the standard cell potential of a battery made from the half reactions below?	
$2H^+ + 2e^- \longrightarrow H_2$ $E^\circ = 0.00V$	
$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$ $E^\circ = +1.23 \text{ V}$	
○ 1.23	
○ 2.46	
○ -2.46	
○ -1.23	
Question 2	1.5 pts
In an electrolytic cell, the negative terminal is the (cathode/anode) and is the site of the (oxidation/reduction) half-reaction.	
o anode, oxidation	
o anode, reduction	
○ cathode, oxidation	
○ cathode, reduction	
Question 3	1.5 pts
Consider the galvanic cell:	
Ag(s) AgCl(s) Cl ⁻ (aq) Cl ⁻ (aq) Hg ₂ Cl ₂ (s) Hg(l)	
What is the smallest possible integer coefficient of Ag(s) in the combined balanced equation?	
○ 2	
O 4	
○ 3	

Question 4 1.5 pts

is reduced and is the reducing agent	
is reduced and is the reducing agent.	
is oxidized and is the oxidizing agent.	
is reduced and is the oxidizing agent.	
Question 5	1.5 pts
	·
What is the E° for the following electrochemical cell where Zn is the cathode?	
Fe Fe ²⁺ (1.0 M) Zn ²⁺ (1.0 M) Zn	
$E^{\circ}_{(Zn)} = -0.76, E^{\circ}_{(Fe)} = -0.44$	
O +1.20	
O +0.32	
O -1.20	
O -0.32	
Question 6	1.5 pts
Which of the metals in the list below will react with 1M H ₂ SO ₄ to produce hydrogen gas?	
$Na^+ + 1e^- \longrightarrow Na$ $E^\circ = -2.714$	
$Cd^{2+} + 2e^{-} \longrightarrow Cd$ $E^{\circ} = -0.403$	
$Pb^{2+} + 2e^- \longrightarrow Pb$ $E^{\circ} = -0.126$	
$Cu^{2+} + 2e^- \longrightarrow Cu$ $E^\circ = +0.337$	
○ Cu only	
Na, Cd, and Pb only	
○ Na, Cd, Pb, and Cu	
Na, Cd, Pb, and Cu Na and Cd only	
	1.5 pt
○ Na and Cd only	1.5 pt
Na and Cd only Question 7	1.5 pt
Na and Cd only Question 7 Consider the voltaic cell:	1.5 pt

○ Sn ²⁺ to Ag ⁺
○ Sn to Ag
○ Ag to Pt
O Pt to Ag
Question 8 1.5 pts
Question o
Using the standard potential tables, what is the largest approximate E° value that can be achieved when two half-cell reactions are combined to form a battery?
○ -3 V
○ -6 V
○ 6 V
○ 3 V
Question 9 1.5 pts
Consider the cell:
Zn(s) Zn ²⁺ (aq) Cl ⁻ (aq) AgCl(s) Ag(s)
Calculate E°.
○ -1.20 V
○ +1.20 V
○ +0.54 V
○ +0.98 V
Question 10 2 pts
Which species will oxidize Cr^{2+} (E°_{red} = -0.407) but not Mn^{2+} (E°_{red} = +1.224)?
$\bigcirc \text{ Fe}^{2+} (E^{\circ}_{\text{red}} = -0.771)$
\circ V ³⁺ (E° _{red} = -0.255)
$\bigcirc Pb^{4+} (E^{\circ}_{red} = +1.68)$
$\bigcirc Zn^{2+} (E^{\circ}_{red} = -0.762)$
O_3 in acid (E° _{red} = +2.076)

Question 11 1.5 pts

If the standard potentials for the couples $Cu^{2+} Cu$, $Ag^{+} Ag$, and $Fe^{2+} Fe$ are ± 0.34 , ± 0.34 reducing agent?	5.55, and 5.11 thospoortery, which is the stronges
○ Cu	
○ Cu²+	
○ Fe	
○ Ag ⁺	
○ Fe²+	
○ Ag	
Question 12	1.5 pt
For the cell diagram below:	
Cd(s) CdSO ₄ (aq) Hg ₂ SO ₄ Hg(l)	
What reaction occurs at the cathode?	
$\bigcirc CdSO_4(s) + 2e^- \longrightarrow 2Cd(l) + SO_4^{2-}(aq)$	
$\bigcirc Hg_2SO_4(s) + 2e^- \longrightarrow 2Hg(l) + SO_4^{2-}(aq)$	
\bigcirc 2Hg(I) + SO ₄ ²⁻ (aq) \longrightarrow Hg ₂ SO ₄ (s) + 2e ⁻	
$\bigcirc 2Cd(I) + SO_4^{2-}(aq) \longrightarrow CdSO_4(s) + 2e^{-}$	
Question 13	2 pi
Consider the cell diagram below:	
Mg(s) Mg ²⁺ (aq) Au ⁺ (aq) Au(s)	
$Mg^{2+} + 2e^{-} \longrightarrow Mg$ $E^{\circ} = -2.36$	
$Au^+ + e^- \longrightarrow Au$ $E^\circ = +1.69$	
What is the cathode and what is the cell type?	
○ Au(s); an electrolytic cell	
Mg(s); an electrolytic cell	
○ Au(s); a voltaic cell	
○ Mg(s); a voltaic cell	
Question 14	1.5 pt
Consider the half-reactions:	
Mn ²⁺ + 2e ⁻ \longrightarrow Mn E° = -1.029 V	

$Ga^{3+} + 3e^{-} \longrightarrow Ga$ $E^{\circ} = -0.560 \text{ V}$	
$Fe^{2+} + 2e^{-} \longrightarrow Fe$ $E^{\circ} = -0.409 \text{ V}$	
$Sn^{2+} + 2e^{-} \longrightarrow Sn$ $E^{\circ} = -0.136 \text{ V}$	
Using the redox couples to establish a voltaic cell, which reaction would be non-spontane	eous?
$\bigcirc Sn^{2+} + Mn \longrightarrow Sn + Mn^{2+}$	
$\bigcirc 2Ga + 3Sn^{2+} \longrightarrow 2Ga^{3+} + 3Sn$	
\bigcirc 2Ga ³⁺ + 3Fe \longrightarrow 2Ga + 3Fe ²⁺	
\bigcirc Sn ²⁺ + Fe \longrightarrow Sn + Fe ²⁺	
$\bigcirc Fe^{2+} + Mn \longrightarrow Mn^{2+} + Fe$	
Question 15	1.5 pts
Find the standard emf of the given cell diagram:	
$Cu(s) Cu^{2+}(aq) Au^{+}(aq) Au(s)$	
$Cu^{2+} + 2e^{-} \longrightarrow Cu \qquad E^{\circ} = +0.34 \text{ V}$	
$Au^+ + e^- \longrightarrow Au \qquad E^\circ = +1.69 \text{ V}$	
○ -1.35 V	
○ -2.03 V	
○ +1.35 V	
○ +2.03 V	
Question 16	2 pts
Which species will REDUCE Ag ⁺ but not Fe ²⁺ ?	
○ Cr	
○ H ₂	
○ K	
○ Co ²⁺	
Question 17	1.5 pts
If the table of standard reduction potentials is ordered with the strongest reducing agents ordered (from top to bottom)?	at the top, how are the reduction potentials
○ from most negative to most positive	
from most positive to most penative	

·	least spontaneous	
Question 18		1.5 pts
Which species is the weake	est reducing agent in the table of half-reactions?	
○ Li ⁺		
○ F ₂		
○ F-		
○ Li		
Question 19		1.5 pts
f the two half-reactions belo	ow were used to make an electrolytic cell, what species would be consumed at the anode?	1.5 pts
f the two half-reactions below: $Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$		1.5 pts
f the two half-reactions below $Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$ $a_{2}(s) + 2e^{-} \longrightarrow 2l^{-}(aq)$	E° = +1.50	1.5 pts
f the two half-reactions below $Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$ $2(s) + 2e^{-} \longrightarrow 2l^{-}(aq)$	E° = +1.50	1.5 pts
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	E° = +1.50	1.5 pts
f the two half-reactions below $Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$ $2(s) + 2e^{-} \longrightarrow 2l^{-}(aq)$ $1^{-}(aq)$ Au(s)	E° = +1.50	1.5 pts
f the two half-reactions below $Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$ $2(s) + 2e^{-} \longrightarrow 2l^{-}(aq)$ $1^{-}(aq)$ $Au(s)$ $Au^{3+}(aq)$	E° = +1.50	1.5 pts